博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
python实现关联规则
阅读量:6204 次
发布时间:2019-06-21

本文共 3291 字,大约阅读时间需要 10 分钟。

  代码中Ci表示候选频繁i项集,Li表示符合条件的频繁i项集

  
  # coding=utf-8
  
  def createC1(dataSet): # 构建所有1项候选项集的集合
  
  C1 = []
  
  for transaction in dataSet:
  
  for item in transaction:
  
  if [item] not in C1:
  
  C1.append([item]) # C1添加的是列表,对于每一项进行添加,[[1], [2], [3], [4], [5]]
  
  #print('C1:',C1)
  
  return list(map(frozenset, C1)) # 使用frozenset,被“冰冻”的集合,为后续建立字典key-value使用。
  
  ###由候选项集生成符合最小支持度的项集L。参数分别为数据集、候选项集列表,最小支持度
  
  ###如
  
  ###C3: [frozenset({1, 2, 3}), frozenset({1, 3, 5}), frozenset({2, 3, 5})]
  
  ###L3: [frozenset({2, 3, 5})]
  
  def scanD(D, Ck, minSupport):
  
  ssCnt = {}
  
  for tid in D: # 对于数据集里的每一条记录
  
  for can in Ck: # 每个候选项集can
  
  if can.issubset(tid): # 若是候选集can是作为记录的子集,那么其值+1,对其计数
  
  if not ssCnt.__contains__(can): # ssCnt[can] = ssCnt.get(can,0)+1一句可破,没有的时候为0,加上1,有的时候用get取出,加1
  
  ssCnt[can] = 1
  
  else:
  
  ssCnt[can] += 1
  
  numItems = float(len(D))
  
  retList = []
  
  supportData = {}
  
  for key in ssCnt:
  
  support = ssCnt[key] / numItems # 除以总的记录条数,即为其支持度
  
  if support >= minSupport:
  
  retList.insert(0, key) # 超过最小支持度的项集,将其记录下来。
  
  supportData[key] = support
  
  return retList, supportData
  
  ###由Lk生成K项候选集Ck
  
  ###如由L2: [frozenset({3, 5}), frozenset({2, 5}), frozenset({2, 3}), frozenset({1, 3})]
  
  ###生成
  
  ###C3: [frozenset({1, 2, 3}), frozenset({1, 3, 5}), frozenset({2, 3, 5})]
  
  def aprioriGen(Lk, k):
  
  retList = []
  
  lenLk = len(Lk)
  
  for i in range(lenLk):
  
  for j in range(i + 1,lenLk):
  
  if len(Lk[i] | Lk[j])==k:
  
  retList.append(Lk[i] | Lk[j])
  
  return list(set(retList))
  
  ####生成所有频繁子集
  
  def apriori(dataSet, minSupport=0.5):
  
  C1 = createC1(dataSet)
  
  D = list(map(set, dataSet))
  
  L1, supportData = scanD(D, C1, minSupport)
  
  L = [L1] # L将包含满足最小支持度,即经过筛选的所有频繁n项集,这里添加频繁1项集
  
  k = 2
  
  while (len(L[k - 2]) > 0): # k=2开始,由频繁1项集生成频繁2项集,直到下一个打的项集为空
  
  Ck = aprioriGen(L[k - 2], k)
  
  Lk, supK = scanD(D, Ck, minSupport)
  
  supportData.update(supK) # supportData为字典,存放每个项集的支持度,并以更新的方式加入新的supK
  
  L.append(Lk)
  
  k += 1
  
  return L, supportData
  
  if __name__ == "__main__":
  
  dataSet = [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
  
  D = list(map(set, dataSet))
  
  L,suppData = apriori(dataSet)
  
  print('L:',L)
  
  print('suppData:',suppData)
  
  '''
  
  C1 = createC1(dataSet)
  
  L1, supportData1 = scanD(D, C1, 0.5)
  
  print('C1:',C1)
  
  print('L1:',L1)
  
  print('supportData1:',supportData1)
  
  C2 = aprioriGen(L1, 2)
  
  L2, supportData2 = scanD(D, C2, 0.5)
  
  print('C2:',C2)
  
  print('L2:',L2)
  
  print('supportData2:www.gcyl152.com/',supportData2)
  
  C3 = aprioriGen(L2, 3)
  
  L3, supportData3 www.michenggw.com= scanD(D, C3, 0.5)
  
  print('C3:',C3)
  
  print('L3:',L3)
  
  print('supportData3:',supportData3)
  
  '''
  
  最终得到的所有支持度大于0.5的频繁子集及其支持度如下:
  
          frozenset({1})www.mcyllpt.com/ : 0.5, 
  
          frozenset({3}): 0.75, 
  
          frozenset({4}): 0.25, 
  
          frozenset({2}): 0.75, 
  
          frozenset({5}): 0.75, 
  
          frozenset({1, 3}): 0.5, 
  
          frozenset({2, 3}): 0.5, 
  
          frozenset({2, 5}): 0.75, 
  
          frozenset({3, 5}): 0.5, 
  
          frozenset({1, 2}): 0.25, 
  
          frozenset({1, 5}): 0.25, 
  
          frozenset({2, 3, 5}): 0.5, 
  
          frozenset({1, 2, 3}): 0.25, 
  
          frozenset({1, 3, 5}): 0.25

转载地址:http://wcqca.baihongyu.com/

你可能感兴趣的文章
ASP.NET MVC5+EF6+EasyUI 后台管理系统(1)-前言与目录(持续更新中...)
查看>>
Android WindowManager和WindowManager.LayoutParams的使用以及实现悬浮窗口的方法
查看>>
[解读REST] 3.基于网络应用的架构
查看>>
Win10 UWP开发系列:使用VS2015 Update2+ionic开发第一个Cordova App
查看>>
29. ExtJs - Struts2 整合(1) - 登录页面
查看>>
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
查看>>
TCGA phenotype各列的含义
查看>>
Python数据结构之四——set(集合)
查看>>
比特币,以太坊......区块链技术真的被认同了吗?
查看>>
WebLogic调用WebService提示Failed to localize、Failed to create WsdlDefinitionFeature
查看>>
020-Spring Boot 监控和度量
查看>>
JAVA中动态编译的简单使用
查看>>
java基础-BigDecimal类常用方法介绍
查看>>
[转]kafka介绍
查看>>
Google Guava新手教程
查看>>
tensorflow 实现逻辑回归——原以为TensorFlow不擅长做线性回归或者逻辑回归,原来是这么简单哇!...
查看>>
Spark 键值对RDD操作
查看>>
004-docker常用命令[二]-容器操作ps,top,attach,export
查看>>
Nancy简单实战之NancyMusicStore(四):实现购物车
查看>>
WIN10系统 截图或者某些程序时屏幕会自动放大怎么办
查看>>